REPORT FOR CMP 505:
ADVANCED PROCEDURAL METHODS

DUNGEON GENERATION BASED ON
VORONOI REGIONS

Naman Merchant

INSTRUCTIONS: 2
INTRODUCTION 3
METHOD 3
TERRAIN: ...evetieetieecteee e eeeettee et e e e ettt et e e eeeseaaaaeeeeesssasaaaeeeeeeseasaaaseeeeesseaaasaseeeessensasesseeeessennsssseeeessesnsnsssseessssnnnres 3
DUNGEON GENERATIONuvviiiitteieeeteeeeeiueeeeeieeeeesiueseessssessesaeesssssesesssssssssssssesssssesssssssssssssssssssssssssssssssssssssessnssseses 4
COLLISIONS AND WALKING ON THE SURFACEcoitttuuttteeeeiieiieteeeeeeeeessiueseeessssssssssseessessssssssssesesssssssssseeesssssssnes 7
TEXTURINGuueeiiotteeeeeteeeeeeteeeeeeteeeeessteeeeesaeeseeaeeesesseeseessseesensaeesaaseesesasseeesansaeessantesesansesessnsseeeseseeeesssanesennreeesenseeeean 7
POST-PROCESSING:......ccitttuuteeteeeieeiiitteeteeeeeeeeseteeeseessesistseeeeesseaisteestessssssssassseessssssasssseessessmsssssseseessomnsssssesesssssnsnes 8
CODE ORGANIZATION 9
CLASS ORGANIZATION:uveiiitreeeeeteeeeeeeeeeeeieeeeessressessesssaseeesesssseessssseesassesessssssesssssessassesessssssesessssessnsssesssssesessnns 9
DATA STRUCTURESooitteeeeeeeeeeeeieteeeeeeeeeeaateeeeeessessstaseeessesssssussseesssssassasseeesessessassseseessssssasssesessssnssssssseesssssnsnnes 10
) D N N 2l 1) 21 SRR 11
CRITICAL APPRAISAL: 11
AYL0) (@) (@) B B 18N (@) £\ LSRR 11
GAMEPLAY AND COLLISIONSvviiietteeeeiteeeeesteeeeesseeeeesteeessseessssssessesssesessssssessssasesssssesesssssessssssesssssssesssssessssasess 12
LY (@) 5 21 SRR 13
POST PROCESSINGS:cuvvveeiiueeeeeeteeeeeeteeeeeteeeeesteeeeessseeesssteeessseeessssaeesensteeesasssessssasessasessesasesesssseessnseeseesnneessnsaeesan 13
THE CORNERSuutetiieteeieeeteeteeeeeeeeeetateeeeeesessasaaaeeeesessaasssseeesessssaassseesessssaassseeeeessssassssesessssssansssesesssssssnsssseeeessnns 14
THE CORRIDORSveeiieuveeeiinteeeeeteeeeeeiteessesseeesessaeesssssseesassesssassesessssasesssssesssassssesssasesssssssesssssesssssseessnsesessssssessnasess 14
REFLECTION 15

REFERENCES 16

CMP 505 Advanced Procedural Methods

INSTRUCTIONS:
Press L to switch to Free Camera Mode, B to toggle the radial blur and G to toggle the bloom effect.

Player can move in all 8 directions while facing one of the cardinal directions.
Player movement: Up, Down, Left and Right.

In the free camera mode, press R to reset the terrain, V to create the dungeon again, F for faulting on the
terrain, S to smoothen the terrain, Space to add some randomized noise and X to add some Perlin Noise.

Camera movement in the free camera mode is the same as how it was provided by the module: i.e. Up
Down Left Right, A, Z, Page Up and Page Down

SPECIAL INSTRUCTIONS

You can change the resolution of the terrain (line 114 of “applicationClass.cpp”) to create larger/smaller
rooms. Additionally, you can also change the number of rooms that can be generated in the voronoi
diagram (line 53 of “Voronoi.cpp”).

To show all the voronoi regions, go to the file: “Voronoi.cyop” and on line no. 80, change the variable:
showFullDiagram from false to true.

To toggle full screen mode, go to “applicationClass.h” and at line no. 11, change the variable
FULL_SCREEN.

*NOTE:

a) In the free cam mode, if you press V before you press R (Generate a dungeon before resetting the
terrain), A dungeon will be drawn on top of the previous dungeon. This way the rooms will be
more spatial and it gives the dungeon an entirely new feel. (everything should, in theory, still be
functional)

b) The entire scene takes about 16 seconds to load in debug mode and appx 2-3 seconds in release
mode. (release and debug refer to visual studio’s configuration settings)

c) Release mode might sometimes have issues with the spawning of the player initially and
movement in the scene, but the same issues do not persist in debug mode.

2| Page Naman Merchant

CMP 505 Advanced Procedural Methods

INTRODUCTION
PROPOSED PROJECT

The project that I chose to work on for procedural methods was Dungeon Generation Based on Voronoi
Diagrams. The final product would have a player in top down view moving around in the dungeon
collecting objects on the way. The shape of the rooms would be the largest square/rectangle based on a
generated voronoi diagram and if possible, be the same shape as that of a voronoi region. The terrain of the
dungeon would not be a flat plane. The project would also have a post-processing effect which would
enhance the looks of the project.

FINAL PROJECT

The final project consists of a scene which loads into a dungeon generated with different rooms and
connecting corridors. The player is in control of a cube model which serves as a player character for the
project. The scene is in a top-down perspective and the player is always visible in the center of the scene.
The player emits a light of his own which makes only the environment around the player visible.

The player collides with the sides of the dungeon walls and moves on the surface of the terrain. All the
collectables in the scene are also lit up and the player can collect them while moving around.

The terrain is altered just before the generation of the dungeon. The terrain runs multiple algorithms to
finally achieve a structure which does not resemble a plane.

The terrain shader of the dungeon is also modified to have 3 different textures and a warm look to it. The
rocks and the slopes are a different texture than that of the floor. There are patches of cracks and dried
blood in various regions of the dungeon.

Along with that, the project also has implemented a post process effect of a radial blur and bloom on specific
objects.

METHOD
TERRAIN:

After the generation of the terrain, the height map of the terrain has been altered and passed through certain
algorithms to give it a less plane-like look.

1) Perlin Noise:
At first the height map’s ‘x” and ‘z’ co-ordinates are passed through a Perlin Noise generator which
outputs a single float value. This value is added to the current height map’s ‘y” value. This gives
the terrain a look similar to that of a wavy/hilly region.
The code to generate Perlin Noise was provided in the tutorial 2 and converted to a C++ class.
[Gustavson 2005] Perlin Noise can also be added to the terrain by entering the Free Cam mode and Pressing ‘X',

2) Faulting:
The faulting algorithm that I run uses a line equation to increase/decrease the height of an entire
area on the left/right of a given line. This changes the look of the terrain if run multiple times. I
run this algorithm 45 times when the scene is loaded.
Faulting can also be applied to the terrain by entering the Free Cam mode and Pressing 'F’.

3| Page Naman Merchant

CMP 505 Advanced Procedural Methods

3) Adding Random noise:
This function is a basic function which adds/subtracts a randomized value from each location of
the height map.
Random Noise can also be added to the terrain by entering the Free Cam mode and Pressing ‘Space’.

4) Smoothen Terrain:
For each index(i) in the height map, the algorithm adds up all the values in the indices around it
(all 8 directions) and aggregates their value. This aggregated value is then applied to the value at
the index of i. This algorithm is applied 20 times after all the algorithms mentioned above have
been run.
Smoothen Terrain can also be applied to the terrain by entering the Free Cam mode and Pressing ‘S’.

DUNGEON GENERATION

The dungeon generation consists of 2 major parts.

1) Voronoi Region Generation and selection of rooms.
2) Delaunay Triangulation and Corridor formation.

Voronoi Regions:

The process of generating the room is summed up in a point format below:

1) Creating a grid of uniform points in the terrain.

2) Adding a randomized value to the points.

3) Generating Voronoi regions using the set of points generated above as Voronoi Seeds.
4) Storing each region in a data structure.

(The code for this process can be found in Voronoi.cpp)

The grid of points is created at every uniform location on the height map provided. These points are then
added with a randomized value(v). If the distance between two points in the grid is “x” the randomized value
(v) will be between -x/2 and x/2. This way the uniformity of the grid will remain intact while retaining the
procedural nature of the voronoi regions that are to be generated. This will also make sure that each room
will not have a marginally different size (Which would have been the case if the points had been completely
random, where one room could have been the size of half the map while another room would be much
smaller than that.)

With the given points, a voronoi diagram is generated. There are a few ways to do this, and the method
that I used was as follows:

a) Obtain a set of points V from the graph generated.

b) For each point on the height map H(i), find the closest voronoi point V(x) in the set of points V.

c) For each point V(x), create a new array R(x) of the type HeightMapType*

d) The array that is stored R will contain all the voronoi regions on the map as separate arrays R(x),
where n(R) = n(V)

e) Parse through each index of the height map and add it to the right region array R(x) depending on
the closest voronoi seed V(x).

4| Page Naman Merchant

CMP 505 Advanced Procedural Methods

As voronoi regions are defined as:

That set of points (called seeds, sites, or generators) is specified beforehand, and for each seed there is a corresponding
region consisting of all points closer to that seed than to any other. These regions are called Voronoi cells. [Wikipedia]

The process mentioned above finds the closest voronoi seed for each index of the height map and stores
them accordingly into a new array (or in this case a dynamic vector) to store each voronoi region separately.

Selection of Rooms

Once the Regions have been obtained, we need to select a small number of these regions to be the rooms of
the dungeon we wish to create. In the selection of the dungeons, we need to keep 2 things in mind:

a) Not to keep a room at any of the borders of the map.
b) No two rooms can be attached to each other.

At this level, the grid of points generated in the beginning of the process is extremely helpful. Here we
select N number of rooms randomly. If any room is negative with either of the two clauses mentioned
above (a, b), another random room is selected in its place.

This process could eventually lead to an infinite loop process (if the number of rooms required > number
of rooms available) so we need to makes sure that the total N must be smaller than {n(V)/10} which is the
total number of available rooms (Depending on the two clauses mentioned above.)

Delaunay Triangulation

To make sure that each room is only connected to the room closest to it,
we run a Delaunay Triangulation algorithm. This triangulation ensures
the connectivity of the rooms closest to each other. In this project, I have
used an external library which performs the triangulation and returns a
graph data structure as a list of edges. [Blackbone 2016] I have modified
this return type a little so that each edge also stores the distance between
the two nodes(rooms) and the index for each voronoi seed of a room.

The code for the library can be found in “/Engine/DelaunayTriangles/”
Minimum Spanning Tree:

Once we have an edge list graph obtained from the Delaunay triangulation algorithm, we need to reduce
the number of corridors that would be connected to a bare minimal. To do this, we create a minimum
spanning tree (according to distances) such that there is no circulation between any two rooms in the
dungeon. This way each room is only connected to the rooms closest to it and there is always a path from
one room to every other room in the map.

5|Page Naman Merchant

CMP 505 Advanced Procedural Methods

The process of creating a minimal spanning tree is as follows (using Kruskal's Algorithm) [Kruskal 1956]:

a) First we sort every edge given to us depending on their weights.
b) Then we add every edge into the back end of a new edge list
c) Check if the edge currently added causes a circulation in the new graph (edge list).
a. To do this we need to convert the provided edge list to an Adjacency List. [Drozdek, 2013]
b. From the first node in the graph, we mark it as ‘traveled” and check recursively if the nodes
adjacent to it lead to a “traveled” node.
c. If the clause above is true the graph is circular, otherwise it isn’t.
d) If the previous clause is true (graph is circular), we remove the recently added edge from the list.
e) Repeat the process until the size of the new edge list = n(Rooms) -1 or all the edges have been
processed through.

After creating the minimum spanning tree, a few of the corridors which create a circularity are added to
this tree and then passed into the next step. Each extra corridor (not part of the minimum spanning tree)
has a 10% chance of being added to the minimum spanning tree. This step is added to the process to
increase the connectivity of the dungeon.

Generating Corridors

Once we have the edge list of corridors from the previous step, we generate the corridors with the given
indices of the rooms (from the edge list). We use the height map and parse through each index between the
x axis of the first point of an edge and the x axis of the second point of an edge to create one corridor while
adding some width to it. We repeat the process for the y axis of the second point to the y axis of the first
point to obtain the second corridor. This way the joint corridor always forms an ‘L’ shape.

We store each corridor as another data structure of the type HeightMapType* for easy access later.

Creating the dungeon from the given data structures:
We now have each room and each corridor stored in easily accessible data structures.

As the dungeon was meant to be a top down map where the player will be able to walk around, the best
option was to indent each vertex of the rooms and corridors into the terrain. (subtract the height by a certain
value). This worked well and there was no need to create a new mesh for the walls of the dungeons.

Generating Collectables positions and Player Position

With the given rooms and corridors, the N number of collectables in the scene need spawn points every
time the dungeon is generated. These spawn points are also generated procedurally. The rooms could hold
between 0 to N/2 collectables whereas the corridors will hold the rest of the collectables. Each corridor can
only hold 1 collectable (at the midpoint location of the corridor). The code also makes sure that each spawn
point is always unique.

6| Page Naman Merchant

CMP 505 Advanced Procedural Methods

COLLISIONS AND WALKING ON THE SURFACE
Walking on the Surface

Walking on the surface works on the principles explained from the rastertek tutorial: Height based
Movement [Rastertek (no date)]. In this tutorial, the camera is used instead of the player, where the camera
casts a ray (passes only the x and z axis values) straight down to the terrain. The terrain will then parse
through all its triangles and check if the given x and z co-ordinates lie within a triangle of the terrain. If the
triangle is found, then the height of at the given co-ordinates is calculated and passed to the camera. This
way the camera will always stay at a certain height just above the terrain. (This is implemented in the Free
Cam Mode where if the camera gets closer to the terrain, it will latch onto the height of the terrain.)

As the terrain has been divided into a quad tree, this technique is efficient to be run in real-time.

The player character in my game also follows the same process as above to move on the surface of the

terrain.
Collisions

As the player in my game was only going to collide with the walls of the terrain, instead of using a complex
triangle intersection between the mesh of the player and a mesh of the terrain, I just added a new variable
to each index of the terrain called “walkable”. This value is passed from the terrain to the player with the
same function as the one when it looks for the height of the triangle in the terrain. If the 3 vertices of the
triangle that the player is in have the value of walkable as 1, the player will be able to walk without any
problems. But if the value of any one of the 3 vertices is < 1.0f the player will not be able to walk on it and
the player’s position will be set to the player’s position in the previous frame.

TEXTURING

The texturing of the terrain is done using a blend of 3 different textures. The shader for this texture is found
in the file: “terrain_ps.hlsl” and “terrain_vs.hlsl”.

The three textures are:

a) Dungeon Floor (“Engine/data/dirt01.dds”)
b) Dungeon walls (“Engine/data/rock.dds”)
c) Cracks (“Engine/data/cracks.dds”)

2 of these 3 textures have a very easy implementation. The Dungeon Wiall is applied to the texture if the
slope of the current pixel’s normal is greater than a certain value otherwise the Dungeon Floor texture is
applied.

The third texture of the cracks is slightly more complicated than the ones above. At first, the value of
walkable for each vertex is passed to the vertex shader and then the pixel shader of the terrain. In the Free
Cam Mode, the value of walkable is multiplied to the red value of each pixel to differentiate the collidable
terrain from the walkable terrain.

7| Page Naman Merchant

CMP 505 Advanced Procedural Methods

In the dungeon (in game), this values of walkable is used to apply the cracks texture. When the value of
walkable is assigned at the generation of the dungeon, the x and z co-ordinates of that particular vertex are
passed through Perlin noise and clamped so that there are no negative values. This value obtained is added
to 1.0 and then assigned to walkable. (1 is added because if the value is smaller than 1 the player will take
that vertex as collidable). This value when accessed by the pixel shader lerps the textures between the
Dungeon floor and Cracks textures with the value of (2.0 - walkable) as its weight. The red value is also directly
proportional to the value of walkable for a pixel.

This way the variable walkable has a dual purpose. In the game mode, if the value of walkable = 0, the
pixel will not be rendered. Because of this, the top of the dungeon walls will never be visible.

POST-PROCESSING:

This project involves 2 different post-processing effects:
Bloom:

The bloom that has been applied is only for the game-objects and not the entire scene. [Learn OpenGL 2015]
The process for the bloom shader is explained below:

[«5)

) The entire scene is rendered to a texture.

o

) Render only the game-objects to another texture and brighten this color.

0

) Run a horizontal blur and then a vertical blur and after down-sampling the texture produced in (b)
d) Sample the texture from the blur (c) back to the original size onto a new texture.

e) Blend the texture rendered in (a) and the texture obtained in (d) and render this onto a new texture
to process later.

To add to this effect, instead of rendering the collectables with the light shader, they have been rendered
with a color shader where the entire cube is rendered as white.

Radial Blur:

After completing the process above, we have a single texture which renders the entire scene with the bloom
effect enabled on the player and the collectables. This texture is then passed through the radialBlurShader
and rendered to the scene.

This effect is a single shader which calculates the aggregate between 10 pixels in its diagonal /radial direction
and depending on the distance from the center, applies a lerp between the normal pixel’s color and the
color of the calculated aggregate. This texture is then rendered to the screen using an orthographic rectangle.

8| Page Naman Merchant

CMP 505 Advanced Procedural Methods

CODE ORGANIZATION
CLASS ORGANIZATION:

FrustumClass
HorizontalBlurShaderClass
RenderTextureClass

OrthoWindowClass

i

TerrainShaderClass

- EEE
- =
- EEEE
-

TextClass QuadTreeClass

FontClass I
olorShaderClass|

[nghtShaderClas% [ModelClass

e

TextureClass

[PositionClass]

Legend:

- Classes given by module

. Classes from external Source
Purely Static Classes
Classes taken from rastertek and modified

Classes Created / Refactored

The framework is similar to that which was provided in the initial phase of the module. (Tutorial 1). The
new classes have been added and organized to suit the framework provided. As I was learning about using
direct x in C++ for the first time, most of the classes here (The ones in yellow) have been understood,
modified (where required) and implemented from the tutorial website: Rastertek.com.

9| Page Naman Merchant

CMP 505 Advanced Procedural Methods

The RenderManagerClass encapsulates all the shaders within it and handles all the rendering functions
that are required in the game. As the rendering process requires several steps (Render to multiple textures
before rendering to scene), the refactoring of this class was essentially required.

MultiplyShaderClass, RadialBlurShaderClass and BloomShaderClass are classes which are used to
initialize their own respective shaders. A new class was made for each as each shader requires different
parameters. For example, the Multiply Shader requires 2 textures while the Radial Blur Shader requires
only one. In each of them, only the pixel (fragment) shader is changed, while their vertex shader is common.

The GameManager class initializes all the game-related models (Except for the terrain which is initialized
in the applications class) which includes spawning of game objects (Collectables and the player), passing
of variables, enabling and disabling objects and keeping track of the collectables remaining.

The class GameObject has two derived classes namely: PlayerClass and CollectablesClass. These are the
only two types of game objects available in the scene and deriving them from the GameObjects class makes
them easier to work with as they both have many similar functionalities. Each class encapsulates the
ModelClass and the LightShaderClass such that every object can have its own model and its own
specifications as required. Each class also holds a pointer to an attached light which gives them access to
manipulate the light object very easily.

The class Voronoi is solely present for the generation of the dungeon. The class uses the data structures
provided from the Delaunay class and follows a step by step process to generate the Rooms and then the
corridors of the dungeon. The function GenerateVoronoi when called returns the data structures of the rooms
and corridors after the generation process is completed.

The class PerlinNoise is a class with static only members which need to be initialized before and released
after the process is completed. This class follows the same code as that was provided in the tutorial 2 of this
module [Gustavson, 2005]. The code has only been converted from java to C++.

Apart from the classes present in rastertek’s tutorials, I have added a new class called PointLightClass
which will hold all the functionalities of a point light in the scene. The game has an array of these point
lights which are sent to the terrain shader and the light shader so that the terrain and the models are lit up
by these point lights. Each point light moves with a game object and the light attached to it. The player’s
light has a flickering effect which makes the environment look like it’s lit up by a torch.

The class Utils was created for ease of use and performing purely mathematical functions without the use
of objects.

DATA STRUCTURES

Below is a list of the data structures used in the generation of the voronoi region dungeon:

The grid of the voronoi seeds (V) is a vector of the type: <VoronoiPoint*>. A VoronoiPoint is a structure
that holds the float co-ordinates of the location of the voronoi point in world space along with the height
of the entire voronoi region and 2 indices. The first index is corresponding to the index of the point in the
height map while the second one relates to the index in the grid of points generated (V).

10| Page Naman Merchant

CMP 505 Advanced Procedural Methods

The struct HeightMapType provided in the source of the module has been modified. This structure now
holds a pointer to VoronoiData* (which holds the VoronoiPoint and the distance from this point for each
index on the height map) and a float value for walkable.

The final struct that was used in the generation of voronoi dungeons was called the VoronoiRegion struct.
This struct holds a pointer to the VoronoiPoint that resides in it along with a list of all the indices that are a
part of this region. This struct makes the process of parsing through all the indices within this region in

real time very quick as each index of a region can now be accessed in constant time.

The class Voronoi has a function: GenerateVoronoiDungeon which returns 2 major data structures (arrays as
Vectors) to the TerrainClass.

a) A vector of type: <VoronoiRegions*> called m_rooms which stores all the rooms and a pointer to
their vertices.

b) A 2D vector of the type <HeightMapType*> called m_corridors to store all the corridors and a
pointer to their vertices.

EXTRA FILES

The Model class that I have used is “cube.txt”. As model loading was not the main aim of the project, cubes
are the only models that I have worked with in this game.

There are many different vertex and pixel shaders that were used in this game. The terrain had a different
shader than that of the models as the terrain required the “walkable” in its shader. Along with that another
shader is used for the radial blur on the texture where the scene is rendered. These shaders are loaded and
compiled from their own respective shader classes. (e.g. The TerrainShaderClass will load and compile
“terrain_vs.hisl” and “terrain_ps.hlsl”)

The font shader and the texture shaders are simple shaders which are used to render the text to the scene
and scene to a texture respectively.

Many of the vertex shader have been re-used. For example: the radial blur vertex shader and the texture
shader’s vertex shader share the same code. For this reason, another new vertex shader has not been
created. Instead, the same vertex shader has been loaded for both the shader classes.

CRITICAL APPRAISAL:
VORONOI DUNGEON:

The code for the dungeon is encapsulated inside the Voronoi class which is called from the TerrainClass.
The functionality is easy to operate with and the data structures of the rooms and corridors obtained are
used for generation of the spawn points. These spawn points can be generated with the complexity of O(n).

In terms of efficiency the dungeon generation code works well for a pre-loading session, but the total
amount of time taken to generate the dungeon is high and cannot be used for real time generation.

11 |Page Naman Merchant

CMP 505 Advanced Procedural Methods

The major problem that lies in this code is the generation of Voronoi regions. The amount of time taken to
process the entire height map and obtain the voronoi points is O(n2) which is quite a lot to process if the
resolution of the height map is high. (In this game it is 256x256)

The solution to this will be to change the algorithm used. The algorithm that is being used currently checks
the seed at the minimum distance from the current region. One way to improve the efficiency would be to
use a quad based system (same as that of the terrain) and only check the distances with the point in the
current quad. But this method will also create problems if the voronoi point of the current index is in
another quad altogether.

The next best option would be to use the midpoint bisection formula which calculates a voronoi diagram
by parsing through each voronoi seed and draws a perpendicular bisector with the points around it
calculated through the Delaunay triangulation algorithm. The voronoi diagram is a connection of all these
bisectors. While this process is less expensive than the one used, it still takes O(n?) amount of time which
is exactly what we are trying to prevent.

Another way to improve the efficiency of this algorithm is to use the Sweep Line algorithm for this process.
This algorithm passes a line from the top of the array to the bottom. Every time the line touches a voronoi
seed, it generates a new parabola. If one parabola touches another parabola, it starts drawing an edge for a
voronoi region. This algorithm was founded by Steven Fortune in 1986. [Fortune 1986]. This algorithm
takes a steady O(n*log(n)) amount of time to calculate the voronoi regions and can also be used for real
time processing. [Kuckir (no date)]

The only problem that lies here is that this algorithm will only give me the edges of the voronoi diagram.
If I want to access each pixel in the diagram, it will take me another O(n) amount of time to do so which
takes me back to my current algorithm.

Certainly, the amount of time taken to generate the voronoi diagram can be slightly faster, but as I do not
need my generation to be real time, the algorithm currently in place works well enough for this game.

GAMEPLAY AND COLLISIONS

The use of the current framework enabled me to use the value walkable as a suitable substitute to a collision
using a triangle intersection check which would’ve been a lot more expensive on a real-time basis.

The problem that arose with this collision was that most of the times the player hit a wall, the player would
vibrate because of the high current velocity. Initially the camera’s position was directly attached to the
player’s position, but when the player hit a wall, because of the vibration, the entire screen would shake.
To overcome this problem, I used a lerp function to smoothly transform the camera’s position to the
player’s position.

Another way of improving the collisions of the player would be to implement wall sliding. This will make
the movement a lot smoother than it already is.

The framework for the game objects and the game manager made it extremely easy to work with the
gameplay programming of the game. With this framework, it was easy to make the camera smoothly follow
the player (using a lerp function) and the player rotate smoothly from one direction to another. It was also
easy to work with lights and reduce their intensity slowly rather than turn them off immediately once the
collectable was collected.

12 | Page Naman Merchant

CMP 505 Advanced Procedural Methods

MODELS

This current game only has cubes loaded into it but it also has the capacity to load other smaller models.
The problem occurs when we try to implement larger more complicated models. I spent a lot of time
injtially trying to load more complicated models, but eventually stopped because this project’s aim was to
explore procedural content rather than load complicated models. Later in the process, I stumbled upon this
library called Assimp which loads models into the scene by providing a list of vertices. If later I was to load
complex assets, I would use this free library instead of creating one of my own.

POST PROCESSING:

Post processing (Render to texture and then render that to screen) had a few permutations and
combinations. Initially I had implemented a Gaussian blur which involved down sampling a rendered
texture, applying a horizontal and then a vertical blur and up sampling the texture, but this result of this
process did not fit very well with the visuals of the game.

After that, I tried applying a bloom to the scene which involved selecting a few pixels from the screen
whose brightness is above a certain threshold, and then blurrmg only those pixels. This blurred texture is
then added to the main texture which fakes the
intensity of light to be greater than it already

is. This works well in environments where the
light is not attached to the player, but in this
game, the added intensity did not fit the scene
very well. Additionally, I have reduced all the
blue light in the game so the chances of a pixel
reaching a high brightness value are low. The
bloom (with a lower threshold) will only affect
the areas around a point light aggressively.
Therefore, I changed the approach and instead
of applying a bloom to the entire scene, I only
applied it to the game-objects in the scene.
(Process is explained in the Methods section Visuals for full screen bloom in this scene
above)

With the bloom effect only on the game objects, one issue that I faced was that the bloomed texture was
passing through the walls of the dungeon. To overcome this problem, keeping in mind that the collectables
are always lit up and the top of the dungeon walls are always black, I have kept a simple check to add the
bloomed effect to the rendered texture only if the current color on the rendered texture is not black. This is
clearly a work around and the ideal solution would be to create a mask for which areas need to be bloomed
and which not. But in the context of this game, this solution (despite not being ideal) works well.

The radial blur also had an issue that I faced. When checking the pixels outside the range of the current
texture, | had an option to either clamp them or leave the pixels accessed to black. Neither of these options
looked good so I changed the blurring algorithm a little. Instead of aggregating with 5 pixels in front and
5 pixels behind, I only aggregated the color with 10 pixels in front of the current pixel (in the same direction
towards the center). This solved the issue entirely and the blur looked like a part of the environment.

13| Page Naman Merchant

CMP 505 Advanced Procedural Methods

THE CORNERS

The entire system of voronoi dungeon generation worked well throughout the process. The game,
according to me, looks like a player with a torch in a dungeon.

There is one issue that I faced throughout the project. The corners of the voronoi dungeon’s rooms are not
of a square or rectangular shape. Because of this when the rooms of the dungeons are indented, the corners
of some of the voronoi rooms are very edgy. This doesn’t look extremely good and I tried a few ways to
solve them.

First I tried to change the triangulation of the terrain. Instead of keeping the triangles in a square-like
formation, I changed them to a set of equilateral triangles which improved the edges of the voronoi rooms,

but because the corridors are straight lines, their walls became a set of edgy lines.

Another way that worked slightly better was to increase the resolution of the height map. Here it improved
the visuals, but not to a massive extent. The edginess of the slopes was still visible.

The best way to solve this problem would be to create a new mesh for the walls of the dungeon by taking
each corner point as a vertex.

THE CORRIDORS

a) Even though these corridors work well enough for the dungeon generated, some of the corridors
pass through other rooms which looks alright in the game mode but doesn’t look extremely good
in the Free Cam mode. The reason why I implemented the minimum spanning tree was so that this
room intersection is minimalized, but the problem persisted. One way to solve this problem
completely would be to create a pathfinder from one room to another and make sure that the path
doesn’t intersect with another room or corridor.

b) Because of the use of the minimum spanning tree, there would’ve been no circular path in the
dungeon. This would've made the journey from one room to another very tedious as the player
needs to traverse through many rooms in the middle to get to the distant room. To reduce this
effect, a few of the corridors that are not a part of the minimum spanning tree (the ones which
create circularity) are added to the structure of the minimum spanning tree

c) Even though the corridors intersecting rooms [mentioned in (a) above] don’t look very good, at
present, it's adding to the circularity of the dungeon which makes the dungeon a little more fun to
explore.

14| Page Naman Merchant

CMP 505 Advanced Procedural Methods

REFLECTION

This semester was a complete learning experience for me. I started off without any experience in C++,
Direct x and graphics programming but ended up learning a lot about each of these aspects in great depth.

I started off by learning more about how direct x works and learnt in depth about the graphics pipeline
and how shaders are loaded and compiled. The tutorial websites: Rastertek [Rastertek (No Date)] and
DirectX Tutorials [DirectX (no date)] were the most helpful at this stage. Later I progressed into loading
models into the scene and adding directional and ambient lights while implementing a specular power to
them. I then learnt about how the terrain system works in the framework provided.

The entire learning process is what took away most of my time in the entire semester. Soon after I started
to get a grasp of how direct x works, I started researching on how I could implement the Voronoi based
dungeon that I planned to implement for this coursework.

The process of research helped me understand different algorithms and how each can be used to generate
better results. For instance, if I had not implemented the grid system to generate the voronoi seeds, I would
have used the K-means algorithm for clustering to reduce the spread of the voronoi seeds throughout the
map.

This entire process also taught me about how to work with shaders. Towards the end, I wrote the entire
shader for the terrain, models and the post processing by myself which was a great leap in terms of learning.

I've always been used to working with game engines and having everything given to me in a platter. In
this project, I was forced to work without any inbuilt structures for game objects and scenes. The entire
process of writing my own game object system helped me understand how game engines work on a deeper
level. I also conducted some research on how I can implement collisions between two meshes which gave
me a deeper insight into how a physics engine would work. The entire lighting system in this game has
been implemented by me which also gave me a better understanding of how lights work in a 3D
environment.

I have still only touched the surface and there is a lot more to learn to reach the level of another game
engine, but this entire module helped me get an entirely new perspective on how I can build my own game
engine.

Dungeon generation was a very important part of this project and creation of this dungeon was a long
process. The gamasutra article on Dungeon Generation was the most helpful to get a better understanding
of how the dungeon generation algorithm works. [Adonaac 2015]

In terms of procedural methods, I have learnt and implemented some different methods that had been
taught to us in the classes. I understand better how the terrain can be modified without having an artist to
work with it. I've also understood methods like particle deposition and how that can be used in various
tools throughout different parts of the pipeline. The deep study of the algorithms to generate the voronoi
dungeons made me see more ways of applying them. For example, I can use the Delaunay triangulation
algorithm to create meshes out of certain given points, or voronoi regions to break a mesh apart as a
destruction algorithm. This has opened many new windows and ways of perceiving different problems.

15| Page Naman Merchant

CMP 505 Advanced Procedural Methods

REFERENCES

Adonaac A. (2015), Procedural =~ Dungeon Generation Algorithm, Available from:
http:/ /www.gamasutra.com/blogs/AAdonaac/20150903 /252889 /Procedural Dungeon Generation Al
gorithm.php [Accessed on: 25th April 2017]

Blackbone (2016), Available from: https://github.com/Bl4ckbOne/delaunay-triangulation [Accessed on
25th April 2017] <External Library>

DirectX Tutorials, Available from: http://www.directxtutorial.com/LessonList.aspx?listid=11 [Accessed
on 25t April 2017]

Drozdek A. (ed. 2013) Graph Representation In: Data Structures and Algorithms in C++ pp. 393-397

Fortune S., (1986), “A sweepline algorithm for Voronoi diagrams” SCG '86 Proceedings of the second
annual symposium on Computational geometry, pp. 313-322

Gustavson S. (2005). "Simplex Noise Demystified" Linkoping University, Sweden [Provided in tutorial
material from the module] <External Library>

Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the traveling salesman problem".
Proceedings of the American Mathematical Society. 7: 48-50.

Kuckir I. Available from: http:/ /blog.ivank.net/fortunes-algorithm-and-implementation.html#impl_cpp
[Accessed on: 25t April 2017]

Learn OpenGL, 2015, Bloom Available from: https://learnopengl.com/#!Advanced-Lighting/Bloom
[Accessed on: 25th April 2017]

Rastertek, Available from: http:/ /www.rastertek.com/ [Accessed on: 25t April 2017] <External Library>

16 | Page Naman Merchant

http://www.gamasutra.com/blogs/AAdonaac/20150903/252889/Procedural_Dungeon_Generation_Algorithm.php
http://www.gamasutra.com/blogs/AAdonaac/20150903/252889/Procedural_Dungeon_Generation_Algorithm.php
https://github.com/Bl4ckb0ne/delaunay-triangulation
http://www.directxtutorial.com/LessonList.aspx?listid=11
http://blog.ivank.net/fortunes-algorithm-and-implementation.html#impl_cpp
https://learnopengl.com/#!Advanced-Lighting/Bloom
http://www.rastertek.com/

